Research Article

Ayman Badawi* and Brahim Fahid

On weakly 2-absorbing δ -primary ideals of commutative rings

DOI: 10.1515/gmj-XXXX, Received May 30, 2016; accepted March 28, 2017

Abstract: Let R be a commutative ring with $1 \neq 0$. We recall that a proper ideal I of R is called a weakly 2-absorbing primary ideal of R if whenever $a, b, c \in R$ and $0 \neq abc \in I$, then $ab \in I$ or $ac \in \sqrt{I}$ or $bc \in \sqrt{I}$. In this paper, we introduce a new class of ideals that is closely related to the class of weakly 2-absorbing primary ideals. Let I(R) be the set of all ideals of R and let $\delta : I(R) \to I(R)$ be a function. Then δ is called an expansion function of ideals of R if whenever L, I, J are ideals of R with $J \subseteq I$, then $L \subseteq \delta(L)$ and $\delta(J) \subseteq \delta(I)$. Let δ be an expansion function of ideals of R. Then a proper ideal I of R (i.e., $I \neq R$) is called a *weakly* 2-absorbing δ -primary ideal if $0 \neq abc \in I$ implies $ab \in I$ or $ac \in \delta(I)$ or $bc \in \delta(I)$. For example, let $\delta : I(R) \to I(R)$ such that $\delta(I) = \sqrt{I}$. Then δ is an expansion function of ideals of R are appropriated of R if and only if I is a weakly 2-absorbing δ -primary ideal of R. A number of results concerning weakly 2-absorbing δ -primary ideals and examples of weakly 2-absorbing δ -primary ideals are given.

Keywords: Prime ideal, 2-absorbing ideal, weakly 2-absorbing ideal, weakly prime ideal, almost prime ideal, ϕ -prime ideal

MSC 2010: 13A05, 13F05

1 Introduction

We assume throughout this paper that all rings are commutative with $1 \neq 0$. Let R be a commutative ring. An ideal I of R is said to be proper if $I \neq R$. Let I be a proper ideal of R. Then \sqrt{I} denotes the radical ideal of I (i.e., $\sqrt{I} = \{x \in R \mid x^n \in I \text{ for some positive integer } n \geq 1\}$). Note that $\sqrt{0}$ is the set (ideal) of all nilpotent elements of R. The notion of 2-absorbing ideals, which is a generalization of prime ideals, was introduced by Badawi in [4] and studied by several authors (see, for instance, [2], [3], [11], and [16]). Some authors studied variations of the concept of a 2-absorbing ideal: for example, on 2-absorbing preradicals (see [9]), classical 2-absorbing submodules of modules over commutative rings (see [15]),and co-2-absorbing preradicals and submodules (see [10]).

Recall that a proper ideal I of R is called a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. In [7], the concept of a 2-absorbing ideal was extended to the context of a 2-absorbing primary ideal which is a generalization of a primary ideal. Recall from [7] that a proper ideal of R is said to be a 2-absorbing primary ideal of R if whenever $a, b, c \in R$ with $abc \in I$, then $ab \in I$ or $ac \in \sqrt{I}$ or $bc \in \sqrt{I}$. Recall from [1] and [12] that a proper ideal I of R is called a weakly prime ideal (weakly primary ideal) if whenever $0 \neq ab \in I$, then $a \in I$ or $b \in I$ ($a \in I$ or $b \in \sqrt{I}$). The concept of a weakly prime ideal was extended to the context of a weakly 2-absorbing ideal. Recall from [6] that a proper ideal I of R is said to be a weakly 2-absorbing ideal of R if whenever $0 \neq abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. The concept of a weakly primary ideal was extended to the context of a weakly 2-absorbing ideal. Recall from [6] that a proper ideal I of R is said to be a weakly primary ideal of R if whenever $0 \neq abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. The concept of a weakly primary ideal was extended to the context of a weakly 2-absorbing primary ideal. Recall from [8] that a proper ideal I of R is said to be a weakly 2-absorbing primary ideal

^{*}Corresponding Author: Ayman Badawi: Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates, e-mail: abadawi@aus.edu

Brahim Fahid: Department of Mathematics, Faculty of Sciences, B.P. 1014, Mohammed V University, Rabat, Morocco, e-mail: fahid.brahim@yahoo.fr

of R if whenever $a, b, c \in R$ with $0 \neq abc \in I$, then $ab \in I$ or $ac \in \sqrt{I}$ or $bc \in \sqrt{I}$. Recently, the first-named author has extended the concept of weakly prime ideals to the context of weakly semi-prime ideals. Recall from [5] that a proper ideal I of R is called a weakly semi-prime ideal of R if $0 \neq a^2 \in I$ implies $a \in I$.

Let I(R) be the set of all ideals of R. Dongsheng Zhao [17] introduced the concept of expansion of ideals of R. We recall from [17] that a function $\delta : I(R) \to I(R)$ is called an expansion function of ideals of R if whenever L, I, J are ideals of R with $J \subseteq I$, then $L \subseteq \delta(L)$ and $\delta(J) \subseteq \delta(I)$. Recall from [17] that a proper ideal I of R is said to be a δ -primary ideal of R if $a, b \in R$ with $ab \in I$ implies $a \in I$ or $b \in \delta(I)$, where δ is an expansion function of ideals of R. The concept of δ -primary ideal was extended to the context of of 2-absorbing δ -primary ideal. Recall from [13] that a proper ideal I of R is said to be a 2-absorbing δ -primary ideal of R if $a, b, c \in R$ with $abc \in I$ implies $ab \in I$ or $ac \in \delta(I)$ or $bc \in \delta(I)$, where δ is an expansion function of ideals of R. Let δ be an expansion function of ideals of R and $I \in I(R)$. In this paper, we call I a weakly 2-absorbing δ -primary ideal if whenever $a, b, c \in R$ and $0 \neq abc \in I$, then $ab \in I$ or $ac \in \delta(I)$ or $bc \in \delta(I)$. Note that if $\delta(I) = I$ for every $I \in I(R)$, then a proper ideal I of R is a weakly 2-absorbing δ -primary ideal of R if and only if I is a weakly 2-absorbing δ -primary ideal of R if and only if I is a weakly 2-absorbing primary ideal of R.

Among the results in this paper, it is shown (Theorem 2.15) that if δ and γ are expansion functions of ideals of R and I is a proper ideal of R such that $\gamma(I)$ is a weakly δ -primary ideal of R, then I is a weakly 2-absorbing $\delta o \gamma$ -primary ideal of R. It is shown (Theorem 2.9) that if δ is expansion function of ideals of R and I is a weakly 2-absorbing δ -primary ideal that is not 2-absorbing δ -primary, then $I^3 = 0$. It is shown (Example 3) that if $I^3 = 0$ for some proper ideal I of R, then I need not be a weakly 2-absorbing δ -primary ideal of R, for some expansion function δ of ideals of R. It is shown (Theorem 2.11) that if δ is an expansion function of ideals of R such that $\delta(0)$ is δ -primary and $\delta(\delta(0)) = \delta(0)$ and I is a weakly 2-absorbing δ -primary ideal of R that is not 2-absorbing δ -primary, then $\delta(I) = \delta(0)$ is a prime ideal of R. It is shown (Theorem 3.5) that if I is a weakly 2-absorbing δ -primary ideal of R and $0 \neq I_1I_2I_3 \subseteq I$ for some ideals I_1, I_2 , and I_3 of R such that I is a free δ -triple-zero with respect to $I_1I_2I_3$, then $I_1I_2 \subseteq I$ or $I_2I_3 \subseteq \delta(I)$ or $I_1I_3 \subseteq \delta(I)$. In the last section, some results concerning weakly 2-absorbing δ -primary ideals in the product of rings are given.

2 Properties of weakly 2-absorbing δ -primary ideals

We start by recalling the definition of a δ -function.

Definition 2.1. Let I(R) be the set of all ideals of R. We recall from [17] that a function $\delta : I(R) \to I(R)$ is called an expansion function of ideals of R if whenever L, I, J are ideals of R with $J \subseteq I$, then $L \subseteq \delta(L)$ and $\delta(J) \subseteq \delta(I)$.

In the following example, we give some expansion functions of ideals of a ring R.

Example 1. Let $\delta : I(R) \to I(R)$ be a function. Then

- (1) If $\delta(I) = I$ for every ideal I of R, then δ is an expansion function of ideals of R, such a function is denoted by δ_I .
- (2) If $\delta(I) = \sqrt{I}$ (note that $\sqrt{R} = R$) for every ideal I of R, then δ is an expansion function of ideals of R, such a function is denoted by $\delta_{\sqrt{I}}$.
- (3) Suppose that R is a quasi-local ring with a maximal ideal M. If $\delta(I) = M$ for every proper ideal I of R and $\delta(R) = R$, then δ is an expansion function of ideals of R, such a function is denoted by δ_{Max} .
- (4) Let I be a proper ideal of R. Recall from [14] that an element $r \in R$ is called an integral over I if there is an integer $n \geq 1$ and $a_i \in I^i$, i = 1, ..., n, $r^n + a_1r^{n-1} + a_2r^{n-2} + \cdots + a_{n-1}r + a_n = 0$. Let $\overline{I} = \{r \in R | r$ be integral over $I\}$. Let $I \in I(R)$. It is known (see [14]) that \overline{I} is an ideal of R and $I \subseteq \overline{I} \subseteq \sqrt{I}$ and if $J \subseteq I$, then $\overline{J} \subseteq \overline{I}$. If $\delta(I) = \overline{I}$ for every ideal I of R, then δ is an expansion function of ideals of R, such a function is denoted by $\delta_{\overline{I}}$.

- (5) Let J be a proper ideal of R. If $\delta(I) = I + J$ for every ideal I of R, then δ is an expansion function of ideals of R, such a function is denoted by δ_+ .
- (6) Assume that δ_1, δ_2 are expansion functions of ideals of R. Let $\delta : I(R) \to I(R)$ such that $\delta(I) = \delta_1(I) + \delta_2(I)$. Then δ is an expansion function of ideals of R, such a function is denoted by δ_{\oplus} .
- (7) Assume that δ_1, δ_2 are expansion functions of ideals of R. Let $\delta : I(R) \to I(R)$ such that $\delta(I) = \delta_1(I) \cap \delta_2(I)$. Then δ is an expansion function of ideals of R, such a function is denoted by δ_{\cap} .
- (8) Assume that δ_1, δ_2 are expansion functions of ideals of R. Let $\delta : I(R) \to I(R)$ such that $\delta(I) = (\delta_1 o \delta_2)(I) = \delta_1(\delta_2(I))$. Then δ is an expansion function of ideals of R, such a function is denoted by δ_o .

Remark 2.2. Note that $\delta_I(J) \subseteq \delta_{\overline{I}}(J) \subseteq \delta_{\sqrt{I}}(J)$ for every $J \in I(R)$.

We recall the following definitions.

Definition 2.3. Let δ be an expansion function of ideals of a ring *R*.

- (1) A proper ideal I of R is called a weakly 2-absorbing δ -primary ideal of R if whenever $a, b, c \in R$, $0 \neq abc \in I$, then $ab \in I$ or $ac \in \delta(I)$ or $bc \in \delta(I)$.
- (2) A proper ideal I of R is called a *weakly* δ -primary ideal of R if whenever $a, b \in R, 0 \neq ab \in I$, then $a \in I$ or $b \in \delta(I)$.
- (3) ([13]). A proper ideal I of R is called a 2-absorbing δ -primary ideal of R if whenever $a, b, c \in R$, $abc \in I$, then $ab \in I$ or $ac \in \delta(I)$ or $bc \in \delta(I)$.
- (4) ([17]). A proper ideal I of R is called a δ -primary ideal of R if whenever $a, b \in R, ab \in I$, then $a \in I$ or $b \in \delta(I)$.

We begin with the following trivial result.

Theorem 2.4. Let δ be an expansion function of ideals of R and $I \in I(R)$. Then

- (1) If I is a 2-absorbing δ -primary ideal of R, then I is a weakly 2-absorbing δ -primary ideal of R.
- (2) If I is a δ -primary ideal of R, then I is a weakly δ -primary ideal of R.
- (3) If I is a weakly δ -primary ideal of R, then I is a weakly 2-absorbing δ -primary ideal of R.
- (4) If I is a δ -primary ideal of R, then I is a 2-absorbing δ -primary ideal of R.
- (5) Let δ_1 be an expansion function of ideal of R such that $\delta(I) \subseteq \delta_1(I)$. If I is a weakly 2-absorbing δ -primary ideal of R, then I is a weakly 2-absorbing δ_1 -primary ideal of R.
- (6) Let δ_1 be an expansion function of the ideal of R such that $\delta(I) \subseteq \delta_1(I)$. If I is a weakly δ -primary ideal of R, then I is a weakly δ_1 -primary ideal of R.

Proof. (1) & (2) The claim is clear by definition.

(3) Suppose that I is a weakly δ -primary ideal of R. Let $0 \neq abc \in I$ for some $a, b, c \in R$, and assume that $ab \notin I$. Since I is a weakly δ -primary ideal of R and $ab \notin I$, we have $c \in \delta(I)$. Thus $ac \in \delta(I)$. Hence I is a weakly 2-absorbing δ -primary ideal of R.

- (4) By a similar argument as in the proof of (3), the claim follows.
- (5) Since $\delta(I) \subseteq \delta_1(I)$ and I is a weakly 2-absorbing δ -primary ideal of R, the claim follows.
- (6) Since $\delta(I) \subseteq \delta_1(I)$ and I is a weakly δ -primary ideal of R, the claim follows.

The following is an example of a weakly 2-absorbing δ -primary ideal of R, for some expansion function δ of the ideal of R, that is neither a weakly 2-absorbing primary ideal of R nor a 2-absorbing δ -primary of R nor a weakly δ -primary ideal of R.

Example 2. Let $A = \mathbb{Z}_8[X, Y, W]$ and $I = X^2 Y^2 W^2 A$ be an ideal of A. Let $R = \frac{A}{I}$ and define $\delta : I(R) \to I(R)$ such that $\delta(L) = L + \frac{xA+I}{I}$. Then it is clear that δ is an expansion function of ideals of R. Let $J = \frac{XYWA}{I}$. Then $\sqrt{J} = \frac{2A+XYWA}{I}$. We show that J is not a weakly 2-absorbing primary ideal of R. For the ring R, we have $0 \neq XYW + I \in J$, but $XY + I \notin J$, $XW + I \notin \sqrt{J}$, and $YW + I \notin \sqrt{J}$. Thus J is not a weakly 2-absorbing primary ideal of R). We show that J is not a weakly 2-absorbing ideal of R). We show that J is not a weakly 2-absorbing ideal of R). We show that J is not a 2-absorbing δ -primary of R. Let $x = 2 + I \in R$. Then $x^3 = 0 + I \in J$, but nether $x^2 = 4 + I \in J$ nor $x^2 = 4 + I \in \delta(I)$. Hence J is not a 2-absorbing δ -primary of R. We show that J is not

a weakly δ -primary ideal of R, for $0 \neq XYW + I \in J$, but $XY + I \notin J$ and $W + I \notin \delta(J)$. Thus J is not a weakly δ -primary ideal of R. By the construction of δ , it is easily verified that J is a weakly 2-absorbing δ -primary ideal of R.

Theorem 2.5. Let δ be an expansion function of ideals of R and I be a proper ideal of R. If $\delta(I)$ is a weakly prime ideal of R, then I is a weakly 2-absorbing δ -primary ideal of R.

Proof. Suppose that $\delta(I)$ is a weakly prime ideal of R. Assume that $0 \neq abc \in I$ and $ab \notin I$ for some $a, b, c \in R$. We consider two cases. **Case one**: Suppose that $ab \notin \delta(I)$. Since $\delta(I)$ is weakly prime and $ab \notin \delta(I)$, we have $c \in \delta(I)$. Thus $ac \in \delta(I)$. **Case two**: Suppose that $ab \in \delta(I)$. Since $0 \neq abc \in I$, we have $0 \neq ab \in \delta(I)$. Since $\delta(I)$ is a weakly prime ideal of R, we have $a \in \delta(I)$ or $b \in \delta(I)$. Thus $ac \in \delta(I)$ or $bc \in \delta(I)$. Thus I is a weakly 2-absorbing δ -primary ideal of R.

Theorem 2.6. Let δ be an expansion function of ideals of R and $L \subseteq I$ be proper ideals of R. Suppose that I is a weakly δ -primary ideal of R such that $\delta(L) = \delta(I)$. Let J be an ideal of R such that $L \subseteq J \subseteq I$. Then J is a weakly 2-absorbing δ -primary ideal of R.

Proof. Since $L \subseteq J \subseteq I$ and $\delta(L) = \delta(I)$, we have $\delta(J) = \delta(I)$. Let $0 \neq abc \in J$ for some $a, b, c \in R$ and suppose that $ab \notin J$. Since $J \subseteq I$, we have $0 \neq abc \in I$. We consider two cases. **Case one**: Suppose that $ab \notin I$. Since I is weakly δ -primary and $ab \notin I$, we have $c \in \delta(I) = \delta(J)$. Thus $ac \in \delta(J)$. **Case two**: Suppose that $ab \in I$. Since $0 \neq abc \in I$, we have $0 \neq ab \in I$. Since I is a weakly δ -primary ideal of R, we have $a \in I \subseteq \delta(J)$ or $b \in \delta(J)$. Thus $ac \in \delta(J)$. Thus $d \in I$.

Definition 2.7. Let δ be an expansion function of ideals of *R*.

- (1) Suppose that I is a weakly δ -primary ideal of R. We say (a, b) is a δ -twin-zero of I if ab = 0, $a \notin I$, and $b \notin \delta(I)$.
- (2) Suppose that I is a weakly 2-absorbing δ -primary ideal of R. We say (a, b, c) is a δ -triple-zero of I if $abc = 0, ab \notin I, bc \notin \delta(I)$, and $ac \notin \delta(I)$.

Theorem 2.8. Let δ be an expansion function of ideals of R. Then

- (1) Let I be a weakly δ -primary ideal of R and suppose that (a,b) is a δ -twin-zero of I for some $a, b \in R$. Then aI = bI = 0.
- (2) Let I be a weakly 2-absorbing δ -primary ideal of R and suppose that (a, b, c) is a δ -triple-zero of I for some $a, b, c \in R$. Then
 - (i) abI = bcI = acI = 0.
 - (ii) $aI^2 = bI^2 = cI^2 = 0.$
- *Proof.* (1) Suppose that $aI \neq 0$. Then there exists $i \in I$ such that $ai \neq 0$. Hence $a(b+i) \neq 0$. Since $a \notin I$ and I is weakly δ -primary, we have $b + i \in \delta(I)$, and hence $b \in \delta(I)$, a contradiction. Thus aI = 0. Similarly, it can be easily verified that bI = 0.
- (2) (i) Suppose that $abI \neq 0$. Then there exists $i \in I$ such that $abi \neq 0$. Hence $ab(c+i) \neq 0$. Since $ab \notin I$ and I is weakly 2-absorbing δ -primary, we have $a(c+i) \in \delta(I)$ or $b(c+i) \in \delta(I)$. So $ac \in \delta(I)$ or $bc \in \delta(I)$, a contradiction. Thus abI = 0. Similarly it can be easily verified that bcI = acI = 0.
 - (ii) Suppose that $ai_1i_2 \neq 0$ for some $i_1, i_2 \in I$. Hence from (1) we have $a(b+i_1)(c+i_2) = ai_1i_2 \neq 0$. It implies either $a(b+i_1) \in I$ or $a(c+i_2) \in \delta(I)$ or $(b+i_1)(c+i_2) \in \delta(I)$. Thus $ab \in I$ or $ac \in \delta(I)$ or $bc \in \delta(I)$, a contradiction. Therefore $aI^2 = 0$. Similarly, one can easily show that $bI^2 = cI^2 = 0$.

Theorem 2.9. Let δ be an expansion function of ideals of R. Then

- (1) If I is a weakly δ -primary ideal that is not δ -primary, then $I^2 = 0$.
- (2) If I is a weakly 2-absorbing δ -primary ideal of R, i.e., not 2-absorbing δ -primary, then $I^3 = 0$.

- *Proof.* (1) Let (a, b) be a δ -twin-zero of I. Suppose that $i_1i_2 \neq 0$ for some $i_1, i_2 \in I$. Then by Theorem 2.8(1), we have $(a + i_1)(b + i_2) = i_1i_2 \neq 0$. Thus $(a + i_1) \in I$ or $(b + i_2) \in \delta(I)$, and hence $a \in I$ or $b \in \delta(I)$, a contradiction. Therefore $I^2 = 0$.
- (2) Suppose that I is a weakly 2-absorbing δ -primary ideal that is not a 2-absorbing δ -primary ideal of R. Then there exists (a, b, c) a δ -triple-zero of I for some $a, b, c \in \mathbb{R}$. Assume that $I^3 \neq 0$. Hence $i_1 i_2 i_3 \neq 0$, for some $i_1, i_2, i_3 \in I$. By Theorem 2.8, we obtain $(a + i_1)(b + i_2)(c + i_3) = i_1 i_2 i_3 \neq 0$. This implies that $(a + i_1)(b + i_2) \in I$ or $(a + i_1)(c + i_3) \in \delta(I)$ or $(b + i_2)(c + i_3) \in \delta(I)$. Thus we have $ab \in I$ or $ac \in \delta(I)$ or $bc \in \delta(I)$, a contradiction. Thus $I^3 = 0$.

The following example shows that a proper ideal I of R with the property $I^3 = 0$ need not be a weakly 2-absorbing $\delta_{\sqrt{I}}$ -primary ideal of R. We have the following example.

Example 3. Let $R = \mathbb{Z}_{90}$. Then $I = \{0, 30, 60\}$ is an ideal of R. Clearly, $I^3 = 0$ and $0 \neq 2 \times 3 \times 5 = 30 \in I$. Since $2 \times 3 = 6 \notin I$, $2 \times 5 = 10 \notin \delta_{\sqrt{I}}(I)$, and $3 \times 5 = 15 \notin \delta_{\sqrt{I}}(I)$, we conclude that I is not a weakly 2-absorbing $\delta_{\sqrt{I}}$ -primary ideal of R.

Theorem 2.10. Let I be a proper ideal of a ring R. Then I is a weakly 2-absorbing $\delta_{\overline{I}}$ -primary ideal of R that is not 2-absorbing $\delta_{\overline{I}}$ -primary if and only if I is a weakly 2-absorbing primary ideal of R that is not 2-absorbing primary.

Proof. Suppose that I is a weakly 2-absorbing $\delta_{\overline{I}}$ -primary ideal of R that is not 2-absorbing $\delta_{\overline{I}}$ -primary. Then $I^3 = 0$ by Theorem 2.9(2). Thus $I \subseteq \sqrt{0} = \sqrt{I}$. Since $\sqrt{0} \subseteq \overline{I} \subseteq \sqrt{I} = \sqrt{0}$, we conclude that $\overline{I} = \sqrt{0}$ and hence I is a weakly 2-absorbing primary ideal of R that is not 2-absorbing primary.

Conversely, I is a weakly 2-absorbing primary ideal of R that is not 2-absorbing primary. Hence I is a weakly 2-absorbing $\delta_{\sqrt{I}}$ -primary ideal of R that is not 2-absorbing $\delta_{\sqrt{I}}$ -primary. Thus $I^3 = 0$, and hence $\sqrt{I} = \sqrt{0}$. Since $\sqrt{0} \subseteq \overline{I} \subseteq \sqrt{I} = \sqrt{0}$, we conclude that $\overline{I} = \sqrt{0}$ and hence I is a weakly 2-absorbing $\delta_{\overline{I}}$ -primary ideal of R that is not 2-absorbing $\delta_{\overline{I}}$ -primary.

Theorem 2.11. Let δ be an expansion function of ideals of R such that $\delta(0)$ is a δ -primary ideal of R and $\delta(\delta(0)) = \delta(0)$. Then

- (1) $\delta(0)$ is a prime ideal of R.
- (2) If I is a weakly δ -primary ideal that is not δ -primary, then $\delta(I) = \delta(0)$ is a prime ideal of R.
- (3) If I is a weakly 2-absorbing δ -primary ideal of R that is not 2-absorbing δ -primary, then $\delta(I) = \delta(0)$.
- *Proof.* (1) Suppose that $ab \in \delta(0)$ and $a \notin \delta(0)$ for some $a, b \in R$. Since $\delta(0)$ is a δ -primary ideal of R and $a \notin \delta(0)$, we have $b \in \delta(\delta(0)) = \delta(0)$. Thus $\delta(0)$ is a prime ideal of R.
- (2) Clearly, $\delta(0) \subseteq \delta(I)$. Since $I^2 = 0$ by Theorem 2.9 and $\delta(0)$ is a prime ideal of R, we have $I \subseteq \delta(0)$. Since $\delta(\delta(0)) = \delta(0)$, we have $\delta(I) \subseteq \delta(\delta(0)) = \delta(0)$. Since $\delta(0) \subseteq \delta(I)$ and $\delta(I) \subseteq \delta(0)$, we have $\delta(I) = \delta(0)$ is a prime ideal of R.
- (3) Again, it is clear that $\delta(0) \subseteq \delta(I)$. Since $I^3 = 0$ by Theorem 2.9 and $\delta(0)$ is a prime ideal of R, we have $I \subseteq \delta(0)$. Since $\delta(\delta(0)) = \delta(0)$, we have $\delta(I) \subseteq \delta(\delta(0)) = \delta(0)$. Since $\delta(0) \subseteq \delta(I)$ and $\delta(I) \subseteq \delta(0)$, we have $\delta(I) = \delta(0)$ is a prime ideal of R.

Theorem 2.12. Let δ be an expansion function of ideals of R such that $\delta(0)$ is a δ -primary ideal of R and $\delta(\delta(0)) = \delta(0)$. Let I be a weakly δ -primary ideal of R that is not a δ -primary ideal of R and J be an ideal of R such that $J \subseteq I$. Then J is a weakly 2-absorbing δ -primary ideal of R. In particular, if L is an ideal of R, then $A = I \cap L$ and B = IL are weakly 2-absorbing δ -primary ideals of R.

Proof. Since I is a weakly δ -primary ideal of R that is not δ -primary, $\delta(I) = \delta(0)$ by Theorem 2.11. Hence $\delta(J) = \delta(I) = \delta(0)$. Let $0 \neq abc \in J$ for some $a, b, c \in R$ and suppose that $ab \notin J$. Since $J \subseteq I$, we have $0 \neq abc \in I$. We consider two cases. **Case one**: Suppose that $ab \notin I$. Since I is weakly δ -primary and $ab \notin I$, we have $c \in \delta(J) = \delta(I) = \delta(0)$. Thus $ac \in \delta(J)$. **Case two**: Suppose that $ab \in I$. Since $0 \neq abc \in I$, we have $0 \neq ab \in I$. Since I is a weakly δ -primary ideal of R, we have $a \in I \subseteq \delta(0)$ or $b \in \delta(0)$. Thus $ac \in \delta(J)$ or $bc \in \delta(J)$. Thus J is a weakly 2-absorbing δ -primary ideal of R. The proof of the "in particular statement" is clear since $A, B \subseteq I$.

Recall that a ring R is said to be reduced if $\sqrt{0} = 0$. A ring R is said to be δ -reduced if $\delta(0) = 0$.

Theorem 2.13. Let δ be an expansion function of ideals of R such that $\delta(0)$ is a δ -primary ideal of R and suppose that R is δ -reduced. Then

- (1) A proper ideal I is a weakly δ -primary ideal of R if and only if I is a δ -primary ideal of R.
- (2) A proper ideal I is a weakly 2-absorbing δ -primary ideal if and only if I is a 2-absorbing δ -primary ideal of R.

Proof. Since R is δ -reduced, we have $\delta(0) = 0$ and hence $\delta(\delta(0)) = \delta(0) = 0$. Since $\delta(0) = 0$ is a δ -primary ideal of R, we conclude that $\delta(0) = 0$ is a prime ideal of R by Theorem 2.11.

- (1) Suppose that $I \neq 0$ and I is a weakly δ -primary ideal of R. If I is not a δ -primary ideal of R, then $\delta(I) = \delta(0) = 0$ by Theorem 2.11 and thus I = 0, a contradiction.
- (2) Suppose $I \neq 0$ and I is a weakly 2-absorbing δ -primary ideal of R. If I is not a 2-absorbing δ -primary ideal of R, then $\delta(I) = \delta(0) = 0$ by Theorem 2.11 and thus I = 0, a contradiction.

Theorem 2.14. Let δ , γ be expansion functions of ideals of R such that $\delta(0)$ is a γ -primary ideal of R. Let I be a proper ideal of R. Then I is a weakly 2-absorbing $\gamma o\delta$ -primary ideal of R if and only if I is a 2-absorbing $\gamma o\delta$ -primary ideal of R.

Proof. Suppose that I is a weakly 2-absorbing $\gamma o\delta$ -primary ideal of R. Assume that $abc \in I$ for some $a, b, c \in R$. If $0 \neq abc \in I$, then $ab \in I$ or $ac \in \gamma(\delta(I))$ or $bc \in \gamma(\delta(I))$. Hence assume that abc = 0 and $ab \notin I$. Since abc = 0 and $\delta(0)$ is a γ -primary ideal of R, we conclude that $a \in \delta(0)$ or $b \in \gamma(\delta(0))$ or $c \in \gamma(\delta(0))$. Since $\gamma(\delta(0)) \subseteq \gamma(\delta(I))$, we conclude that $ac \in \gamma(\delta(0)) \subseteq \gamma(\delta(I))$ or $bc \in \gamma(\delta(0)) \subseteq \gamma(\delta(I))$. Thus I is a 2-absorbing $\gamma o\delta$ -primary ideal of R. The converse is clear.

Theorem 2.15. Let δ and γ be expansion functions of ideals of R, and let I be a proper ideal of R such that $\gamma(I)$ is a weakly δ -primary ideal of R. Then I is a weakly 2-absorbing $\delta \circ \gamma$ -primary ideal of R.

Proof. Suppose that $0 \neq abc \in I$ for some $a, b, c \in R$ and $ab \notin I$. Suppose that $ab \notin \gamma(I)$. Since $\gamma(I)$ is a weakly δ -primary ideal of R, we have $c \in \delta(\gamma(I))$, and thus $ac \in \delta(\gamma(I))$. Suppose that $ab \in \gamma(I)$. Since $0 \neq abc \in I$ and $ab \in \gamma(I)$, we have $0 \neq ab \in \gamma(I)$. Since $\gamma(I)$ is a weakly δ -primary ideal of R and $0 \neq ab \in \gamma(I)$, we have $a \in \delta(\gamma(I))$ or $b \in \delta(\gamma(I))$. Thus $ac \in \delta(\gamma(I))$ or $bc \in \delta(\gamma(I))$. Thus I is a weakly 2-absorbing $\delta o\gamma$ -primary ideal of R.

Recall from [17] that an expansion function δ of ideals of R is intersection preserving if $\delta(I \cap J) = \delta(I) \cap \delta(J)$ for every $I, J \in I(R)$.

Theorem 2.16. Let δ be an expansion function of ideals of R such that $\delta(0)$ is δ -primary, $\delta(\delta(0)) = \delta(0)$ and δ is intersection preserving. Let I_1, I_2, \ldots, I_n be weakly 2-absorbing δ -primary ideals of R such that every I_i , $i = 1, \ldots, n$, is not 2-absorbing δ -primary. Then $I = \bigcap_{i=1}^n I_i$ is a weakly 2-absorbing δ -primary ideal of R.

Proof. Observe that $\delta(I_i) = \delta(0)$ for each $1 \le i \le n$ by Theorem 2.11. Since δ is intersection preserving, we conclude that $\delta(I) = \delta(0)$. Suppose that $a, b, c \in R$ with $0 \ne abc \in I$ and $ab \notin I$. Then $ab \notin I_k$ for some $1 \le k \le n$. Hence $bc \in \delta(I_k) = \delta(0) = \delta(I)$ or $ac \in \delta(I_k) = \delta(0) = \delta(I)$. Hence I is a weakly δ -2-absorbing ideal of R.

Let $f : R \longrightarrow S$ be a ring-homomorphism, γ be an expansion function of ideals of R, and δ be an expansion function of ideals of S. We say that f is a $\gamma\delta$ -ring-homomorphism if $\gamma(f^{-1}(I)) = f^{-1}(\delta(I))$ for all $I \in I(S)$. Note that if f is a surjective $\gamma\delta$ -ring-homomorphism and $ker(f) \subseteq I$, for some ideal $I \in I(R)$, then $f(\gamma(I)) = \delta(f(I))$. In particular, if f is a $\gamma\delta$ -ring-isomorphism, then $f(\gamma(I)) = \delta(f(I))$ for every ideal I of R.

Theorem 2.17. Let $f : R \longrightarrow R'$ be a ring-homomorphism, γ be an expansion function of ideals of R, and δ be an expansion function of ideals of R'. Suppose that f is a $\gamma\delta$ -ring-homomorphism. Then

- (1) If f is a monomorphism and J' is a weakly 2-absorbing δ -primary ideal of R', then $f^{-1}(J')$ is a weakly 2-absorbing γ -primary ideal of R.
- (2) If f is an epimorphism and J is a weakly 2-absorbing γ -primary ideal of R containing Ker(f), then f(J) is a weakly 2-absorbing δ -primary ideal of R'.
- Proof. (1) Let $a, b, c \in R$ such that $0 \neq abc \in f^{-1}(J')$. Since Ker(f) = 0, we get $0 \neq f(abc) = f(a)f(b)f(c) \in J'$. Hence we have $f(a)f(b) \in J'$ or $f(b)f(c) \in \delta(J')$ or $f(a)f(c) \in \delta(J')$, and thus $ab \in f^{-1}(J')$ or $bc \in f^{-1}(\delta(J'))$ or $ac \in f^{-1}(\delta(J'))$. Since $f^{-1}(\delta(J')) = \gamma(f^{-1}(J'))$, we conclude that $f^{-1}(J')$ is a weakly 2-absorbing γ -primary ideal of R.
- (2) Let $a', b', c' \in R'$ and $0 \neq a'b'c' \in f(J)$. Then there exist $a, b, c \in R$ such that f(a) = a', f(b) = b', f(c) = c' and $0 \neq f(abc) = a'b'c' \in f(J)$. Since $Ker(f) \subseteq J$, we have $0 \neq abc \in J$. It implies that $ab \in J$ or $ac \in \gamma(J)$ or $bc \in \gamma(J)$. This means that $a'b' \in f(J)$ or $a'c' \in f(\gamma(J)) \subseteq \delta(f(J))$ or $b'c' \in f(\gamma(J)) \subseteq \delta(f(J))$. Thus f(J) is a weakly 2-absorbing δ -primary ideal of R'.

Theorem 2.18. Let γ be an expansion function of ideals of R and let I, J be proper ideals of R with $I \subseteq J$. Let $\delta : I(\frac{R}{I}) \to I(\frac{R}{I})$ be an expansion function of ideals of $S = \frac{R}{I}$ such that $\delta(\frac{L+I}{I}) = \frac{\gamma(L+I)}{I}$ for every $L \in I(R)$. Then the followings statements hold.

- (1) Let $f : R \to S = \frac{R}{I}$ such that f(r) = r + I for every $r \in R$. Then f is a surjective $\gamma \delta$ -ring-homomorphism.
- (2) If J is a weakly 2-absorbing γ -primary ideal of R, then J/I is a weakly 2-absorbing δ -primary ideal of S.
- (3) If I is a 2-absorbing γ-primary ideal of R and J/I is a weakly 2-absorbing δ-primary ideal of S, then J is a 2-absorbing γ-primary ideal of R.
- (4) If I is a weakly 2-absorbing δ-primary ideal of R and J/I is a weakly 2-absorbing δ-primary ideal of S, then J is a weakly 2-absorbing δ-primary ideal of R.
- Proof. (1) It is clear that f is surjective. Let $K \in I(S)$. Then K = L + I for some $L \in I(R)$. Hence $f^{-1}(\delta(K)) = f^{-1}(\frac{\gamma(L+I)}{I}) = \gamma(L+I) = \gamma(f^{-1}(\frac{L+I}{I}))$. Thus f is a surjective $\gamma\delta$ -ring-homomorphism.
- (2) It is obtained from Theorem 2.17(2).
- (3) Let $a, b, c \in R$ and $abc \in J$. If $abc \in I$, then $ab \in I \subseteq J$ or $bc \in \gamma(I) \subseteq \gamma(J)$ or $ac \in \gamma(I) \subseteq \gamma(J)$. So we may assume that $abc \notin I$. Then we have $I \neq (a+I)(b+I)(c+I) \in J/I$. Since J/I is a weakly 2-absorbing δ -primary ideal of R/I, we conclude $(a+I)(b+I) = ab + I \in J/I$ or $(a+I)(c+I) = ac + I \in \delta(J/I)$ or $(b+I)(c+I) = bc + I \in \delta(J/I)$. It follows that $ab \in J$ or $ac \in \gamma(J)$ or $bc \in \gamma(J)$. Thus J is a 2-absorbing γ -primary ideal of R.
- (4) Let $a, b, c \in R$ and $0 \neq abc \in J$. Then by a similar argument as in (3), J is a weakly 2-absorbing γ -primary ideal of R.

Theorem 2.19. Let S be a multiplicatively closed subset of R such that $0 \notin S$, δ be an expansion function of ideals of R, and δ_S be an expansion function of ideals of R_S such that $\delta_S(I_S) = \delta(I)_S$ for every $I \in I(R)$. If I is a weakly 2-absorbing δ -primary ideal of R with $I \cap S = \emptyset$, then I_S is a weakly 2-absorbing δ_S -primary ideal of R_S .

Proof. Let $a, b, c \in R$, $s, t, k \in S$ such that $0 \neq \frac{a}{s} \frac{b}{t} \frac{c}{k} \in I_S$. Then there exists $u \in S$ such that $0 \neq uabc \in I$. Since I is a weakly 2-absorbing δ -primary ideal of R, we get either $uab \in I$ or $bc \in \delta(I)$ or $uac \in \delta(I)$. If $uab \in I$, then $\frac{a}{s} \frac{b}{t} = \frac{uab}{ust} \in I_S$. If $bc \in \delta(I)$, then $\frac{b}{t} \frac{c}{k} \in \delta(I)_S = \delta_S(I_S)$. If $uac \in \delta(I)$, then $\frac{a}{s} \frac{c}{k} = \frac{uac}{usk} \in \delta(I)_S = \delta_S(I_S)$. If $uac \in \delta(I)$, then $\frac{a}{s} \frac{c}{k} = \frac{uac}{usk} \in \delta(I)_S = \delta_S(I_S)$. Thus I_S is a weakly 2-absorbing δ_S -primary ideal of R_S .

We terminate this section with the following result.

Theorem 2.20. Let δ be an expansion function of ideals of R and let I, J be proper ideals of R. Suppose that I, J are δ -primary ideals of R such that $\delta(I \cap J) = \delta(I) \cap \delta(J)$. Then $L = I \cap J$ is a 2-absorbing δ -primary ideal of R.

Proof. Suppose that $abc \in L$ for some $a, b, c \in R$ and assume that $ab \notin L$. We consider three cases. **Case one:** Suppose that $ab \in I$ and $ab \notin J$. Since J is a δ -primary ideal of R, we have $c \in \delta(J)$. Since I is a δ -primary ideal of R, we have $a \in \delta(I)$ or $b \in \delta(I)$. Thus $ac \in \delta(I \cap J) = \delta(I) \cap \delta(J)$ or $bc \in \delta(I \cap J) = \delta(I) \cap \delta(J)$. Case two: Suppose that $ab \notin I$ and $ab \in J$. By a similar argument as in case I, we conclude that $ac \in \delta(I \cap J) = \delta(I) \cap \delta(J)$ or $bc \in \delta(I \cap J) = \delta(I) \cap \delta(J)$. Case three: Suppose that $ab \notin I$ and $ab \notin J$. Since I, J are δ -primary ideals of R, we conclude that $c \in \delta(I) \cap \delta(J)$. Thus $ac, bc \in \delta(I \cap J) = \delta(I) \cap \delta(J)$. Hence $L = I \cap J$ is a 2-absorbing δ -primary ideal of R.

By a similar argument as in the proof of Theorem 2.20, one can prove the following result.

Theorem 2.21. Let δ be an expansion function of ideals of R and let I, J be proper ideals of R. Suppose that I, J are weakly δ -primary ideals of R such that $\delta(I \cap J) = \delta(I) \cap \delta(J)$. Then $L = I \cap J$ is a weakly 2-absorbing δ -primary ideal of R.

3 Strongly weakly 2-absorbing δ -primary ideals

Definition 3.1. Let δ be an expansion function of ideals of R and let I be a proper ideal of R. Then I is called a *strongly weakly 2-absorbing* δ -*primary ideal of* R if whenever $0 \neq I_1I_2I_3 \subseteq I$ for some ideals I_1, I_2 , and I_3 of R, then $I_1I_2 \subseteq I$ or $I_2I_3 \subseteq \delta(I)$ or $I_1I_3 \subseteq \delta(I)$.

Definition 3.2. Let δ be an expansion function of ideals of R and assume that I is a weakly 2-absorbing δ -primary ideal of R. Suppose that $0 \neq I_1 I_2 I_3 \subseteq I$ for some ideals I_1 , I_2 , and I_3 of R. We say I is a free δ -triple-zero with respect to $I_1 I_2 I_3$ if (a, b, c) is not a δ -triple-zero of I for every $a \in I_1, b \in I_2$, and $c \in I_3$. We say that I is a free δ -triple-zero if whenever $0 \neq I_1 I_2 I_3 \subseteq I$ for some ideals I_1 , I_2 , and I_3 of R, then I is free δ -triple-zero with respect to $I_1 I_2 I_3$.

The following conjecture is an analogue of [8, Conjecture 1].

Conjecture 1. Let δ be an expansion function of ideals of R. If I is a weakly 2-absorbing δ -primary ideal of R and $0 \neq I_1I_2I_3 \subseteq I$ for some ideals I_1, I_2 , and I_3 of R, then I is a free δ -triple-zero with respect to $I_1I_2I_3$.

The following result is an analogue of [8, Lemma 2.29].

Lemma 3.3. Let δ be an expansion function of ideals of R. Let I be a weakly 2-absorbing δ -primary ideal of a ring R and suppose that $abJ \subseteq I$ for some elements $a, b \in R$ and some ideal J of R such that (a, b, c) is not a δ -triple-zero of I for every $c \in J$. If $ab \notin I$, then $aJ \subseteq \delta(I)$ or $bJ \subseteq \delta(I)$.

Proof. Suppose that $aJ \nsubseteq \delta(I)$ and $bJ \nsubseteq \delta(I)$. Then $aj_1 \notin \delta(I)$ and $bj_2 \notin \delta(I)$ for some $j_1, j_2 \in J$. Since (a, b, j_1) is not a δ -triple-zero of I and $abj_1 \in I$ and $ab \notin I$ and $aj_1 \notin \delta(I)$, we have $bj_1 \in \delta(I)$. Since (a, b, j_2) is not a δ -triple-zero of I and $abj_2 \in I$ and $ab \notin I$ and $bj_2 \notin \delta(I)$, we have $aj_2 \in \delta(I)$. Now, since $(a, b, j_1 + j_2)$ is not a δ -triple-zero of I and $abj_2 \in I$ and $ab \notin I$ and $bj_2 \notin \delta(I)$, we have $aj_2 \in \delta(I)$. Now, since $(a, b, j_1 + j_2)$ is not a δ -triple-zero of I and $ab(j_1 + j_2) \in I$ and $ab \notin I$, we have $a(j_1 + j_2) \in \delta(I)$ or $b(j_1 + j_2) \in \delta(I)$. Suppose that $a(j_1 + j_2) = aj_1 + aj_2 \in \delta(I)$. Since $aj_2 \in \delta(I)$, we have $aj_1 \in \delta(I)$, a contradiction. Suppose that $b(j_1 + j_2) = bj_1 + bj_2 \in \delta(I)$. Since $bj_1 \in \delta(I)$, we have $bj_2 \in \delta(I)$, a contradiction again. Thus $aJ \subseteq \delta(I)$ or $bJ \subseteq \delta(I)$.

Remark 3.4. Let δ be an expansion function of ideals of R. If I be a weakly 2-absorbing δ -primary ideal of R and suppose that $I_1I_2I_3 \subseteq I$ for some ideals I_1, I_2 , and I_3 of R such that I is free δ -triple-zero with respect to $I_1I_2I_3$. Then if $a \in I_1, b \in I_2$, and $c \in I_3$, then $ab \in I$ or $ac \in \delta(I)$ or $bc \in \delta(I)$.

Let δ be an expansion function of ideals of R. Let I be a weakly 2-absorbing δ -primary ideal of R. In view of the result below, one can see that Conjecture 1 is valid if and only if whenever $0 \neq I_1 I_2 I_3 \subseteq I$ for some ideals I_1, I_2 , and I_3 of R such that I is a free δ -triple-zero with respect to $I_1 I_2 I_3$. Then $I_1 I_2 \subseteq I$ or $I_2 I_3 \subseteq \delta(I)$ or $I_1 I_3 \subseteq \delta(I)$.

The following result is an analogue of [8, Theorem 2.30].

Theorem 3.5. Let δ be an expansion function of ideals of R. If I is a weakly 2-absorbing δ -primary ideal of R and it is supposed that $0 \neq I_1I_2I_3 \subseteq I$ for some ideals I_1, I_2 , and I_3 of R such that I is a free δ -triple-zero with respect to $I_1I_2I_3$, then $I_1I_2 \subseteq I$ or $I_2I_3 \subseteq \delta(I)$ or $I_1I_3 \subseteq \delta(I)$.

Proof. Suppose that I is a weakly 2-absorbing δ -primary ideal of R and $0 \neq I_1I_2I_3 \subseteq I$ for some ideals I_1, I_2, I_3 of R such that I is free triple-zero with respect to $I_1I_2I_3$. Suppose that $I_1I_2 \not\subseteq I$. By Remark 3.4, we proceed with the same argument as in the proof of [8, Theorem 2.30]. We show that $I_1I_3 \subseteq \sqrt{I}$ or $I_2I_3 \subseteq \delta(I)$. Suppose that neither $I_1I_3 \subseteq \delta(I)$ nor $I_2I_3 \subseteq \delta(I)$. Then there are $q_1 \in I_1$ and $q_2 \in I_2$ such that neither $q_1I_3 \subseteq \delta(I)$ nor $q_2I_3 \subseteq \delta(I)$. Since $q_1q_2I_3 \subseteq I$ and neither $q_1I_3 \subseteq \delta(I)$ nor $q_2I_3 \subseteq \delta(I)$, we have $q_1q_2 \in I$ by Lemma 3.3.

Since $I_1I_2 \not\subseteq I$, we have $ab \notin I$ for some $a \in I_1$, $b \in I_2$. Since $abI_3 \subseteq I$ and $ab \notin I$, we have $aI_3 \subseteq \delta(I)$ or $bI_3 \subseteq \delta(I)$ by Lemma 3.3. We consider three cases.

Case one: Suppose that $aI_3 \subseteq \delta(I)$, but $bI_3 \not\subseteq \delta(I)$. Since $q_1bI_3 \subseteq I$ and neither $bI_3 \subseteq \delta(I)$ nor $q_1I_3 \subseteq \delta(I)$, we conclude that $q_1b \in I$ by Lemma 3.3. Since $(a+q_1)bI_3 \subseteq I$ and $aI_3 \subseteq \delta(I)$, but $q_1I_3 \not\subseteq \delta(I)$, we conclude that $(a+q_1)I_3 \not\subseteq \delta(I)$. Since neither $bI_3 \subseteq \delta(I)$ nor $(a+q_1)I_3 \subseteq \delta(I)$, we conclude that $(a+q_1)I_3 \not\subseteq \delta(I)$. Since neither $bI_3 \subseteq \delta(I)$ nor $(a+q_1)I_3 \subseteq \delta(I)$, we conclude that $(a+q_1)b \in I$ by Lemma 3.3. Since $(a+q_1)b = ab + q_1b \in I$ and $q_1b \in I$, we conclude that $ab \in I$, a contradiction.

Case two: Suppose that $bI_3 \subseteq \delta(I)$, but $aI_3 \not\subseteq \delta(I)$. Since $aq_2I_3 \subseteq I$ and neither $aI_3 \subseteq \delta(I)$ nor $q_2I_3 \subseteq \delta(I)$, we conclude that $aq_2 \in I$. Since $a(b+q_2)I_3 \subseteq I$ and $bI_3 \subseteq \delta(I)$, but $q_2I_3 \not\subseteq \delta(I)$, we conclude that $(b+q_2)I_3 \not\subseteq \delta(I)$. Since neither $aI_3 \subseteq \delta(I)$ nor $(b+q_2)I_3 \subseteq \delta(I)$, we conclude that $a(b+q_2) \in I$ by Lemma 3.3. Since $a(b+q_2) = ab + aq_2 \in I$ and $aq_2 \in I$, we conclude that $ab \in I$, a contradiction.

Case three: Suppose that $aI_3 \subseteq \delta(I)$ and $bI_3 \subseteq \delta(I)$. Since $bI_3 \subseteq \delta(I)$ and $q_2I_3 \not\subseteq \delta(I)$, we conclude that $(b+q_2)I_3 \not\subseteq \delta(I)$. Since $q_1(b+q_2)I_3 \subseteq I$ and neither $q_1I_3 \subseteq \delta(I)$ nor $(b+q_2)I_3 \subseteq \delta(I)$, we conclude that $q_1(b+q_2) = q_1b + q_1q_2 \in I$ by Lemma 3.3. Since $q_1q_2 \in I$ and $q_1b + q_1q_2 \in I$, we conclude that $bq_1 \in I$. Since $aI_3 \subseteq \delta(I)$ and $q_1I_3 \not\subseteq \delta(I)$, we conclude that $(a+q_1)I_3 \not\subseteq \delta(I)$. Since $(a+q_1)q_2I_3 \subseteq I$ and neither $q_2I_3 \subseteq \delta(I)$ nor $(a+q_1)q_2 \in I$ by Lemma 3.3. Since $q_1q_2 \in I$ and $q_1b + q_1q_2 \in I$ by Lemma 3.3. Since $q_1q_2 \in I$ and $aq_2 + q_1q_2 \in I$ by Lemma 3.3. Since $q_1q_2 \in I$ and $aq_2 + q_1q_2 \in I$, we conclude that $aq_2 \in I$. Now, since $(a+q_1)(b+q_2)I_3 \subseteq I$ and neither $(a+q_1)I_3 \subseteq \delta(I)$ nor $(b+q_2)I_3 \subseteq \delta(I)$, we conclude that $(a+q_1)(b+q_2) = ab + aq_2 + bq_1 + q_1q_2 \in I$ by Lemma 3.3. Since $aq_2, bq_1, q_1q_2 \in I$, we have $aq_2 + bq_1 + q_1q_2 \in I$. Since $ab + aq_2 + bq_1 + q_1q_2 \in I$ and $aq_2 + bq_1 + q_1q_2 \in I$ and $aq_2 + bq_1 + q_1q_2 \in I$ and $aq_2 + bq_1 + q_1q_2 \in I$. Now, since $(a+q_1)I_3 \subseteq \delta(I)$ or $I_2I_3 \subseteq \delta(I)$.

Let δ be an expansion function of ideals of R. It is clear that if a proper ideal I of R is a strongly weakly 2-absorbing δ -primary ideal of R, then I is a weakly 2-absorbing δ -primary ideal of R. Theorem 3.5 gives a partially affirmative answer to the following conjecture.

Conjecture 2. Let δ be an expansion function of ideals of R and let I be a proper ideal of R. Then the following statements are equivalent.

- (1) I is a strongly weakly 2-absorbing δ -primary ideal of R.
- (2) I is a weakly 2-absorbing δ -primary ideal of R.
- (3) I is a free δ -triple-zero.

4 Weakly 2-absorbing δ -primary ideals in product of rings

Let R_1, \ldots, R_n , where $n \ge 2$, be commutative rings with $1 \ne 0$. Assume that $\delta_1, \ldots, \delta_n$ are expansion functions of ideals of R_1, \ldots, R_n , respectively. Let $R = R_1 \times \cdots \times R_n$. We define a function $\delta_{\times} : I(R) \rightarrow I(R)$ such that $\delta_{\times}(I_1 \times \cdots \times I_n) = \delta_1(I_1) \times \cdots \times \delta_n(I_n)$ for every $I_i \in I(R_i)$, where $1 \le i \le n$. Then it is clear that δ_{\times} is an expansion function of ideals of R. Note that every ideal of R is of the form $I_1 \times \cdots \times I_n$, where each I_i is an ideal of $R_i, 1 \le i \le n$. **Theorem 4.1.** Let R_1 and R_2 be commutative rings with $1 \neq 0$, δ_1 , δ_2 be expansion functions of ideals of R_1 , R_2 , respectively. Let I be a proper ideal of R_1 , and $R = R_1 \times R_2$. Then the following statements are equivalent.

- (1) $I \times R_2$ is a weakly 2-absorbing δ_{\times} -primary ideal of R.
- (2) $I \times R_2$ is a 2-absorbing δ_{\times} -primary ideal of R.
- (3) I is a 2-absorbing δ_1 -primary ideal of R_1 .

Proof. (1) \Rightarrow (2) Let $J = I \times R_2$. Then $J^3 \neq (0,0)$. Hence J is a 2-absorbing δ_{\times} -primary ideal of R by Theorem 2.9(2).

 $(2) \Rightarrow (3)$ Suppose that I is not a 2-absorbing δ_1 -primary ideal of R_1 . Then there exist $a, b, c \in R_1$ such that $abc \in I$, but $ab \notin I$, $bc \notin \delta_1(I)$, and $ac \notin \delta_1(I)$. Since $(a, 1)(b, 1)(c, 1) \in I \times R_2$, we have $(a, 1)(b, 1) = (ab, 1) \in I \times R_2$ or $(a, 1)(c, 1) = (ac, 1) \in \delta_{\times}(I \times R_2)$ or $(b, 1)(c, 1) = (bc, 1) \in \delta_{\times}(I \times R_2)$. It follows that $ab \in I$ or $bc \in \delta_1(I)$ or $ac \in \delta_1(I)$, a contradiction. Thus I is a 2-absorbing δ_1 -primary ideal of R_1 .

(3) \Rightarrow (1) Let *I* be a 2-absorbing δ_1 -primary ideal of R_1 . Then it is clear that $I \times R_2$ is a 2-absorbing δ_{\times} -primary ideal of *R*.

Theorem 4.2. Let R_1 and R_2 be commutative rings with $1 \neq 0$, $R = R_1 \times R_2$, and δ_1, δ_2 be expansion functions of ideals of R_1, R_2 , respectively. Let $J = I_1 \times I_2$ be a proper ideal of R, for some nonzero ideals I_1, I_2 of R_1, R_2 , respectively, such that for every $i \in \{1, 2\}$, if $I_i \neq R_i$, then $\delta_i(I_i) \neq R_i$. Then the following statements are equivalent.

- (1) $J = I_1 \times I_2$ is a weakly 2-absorbing δ_{\times} -primary ideal of R.
- (2) $I_1 = R_1$ and I_2 is a 2-absorbing δ_2 -primary ideal of R_2 or $I_2 = R_2$ and I_1 is a 2-absorbing δ_1 -primary ideal of R_1 or I_1 is a δ_1 -primary ideal of R_1 and I_2 is a δ_2 -primary ideal R_2 .
- (3) $I_1 \times I_2$ is a 2-absorbing δ_{\times} -primary ideal of R.

Proof. $(1) \Rightarrow (2)$ Assume that $I_1 \times I_2$ is a weakly 2-absorbing δ_{\times} -primary ideal of R. If $I_1 = R_1$ ($I_2 = R_2$), then I_2 is a 2-absorbing δ_2 -primary ideal of R_2 (I_1 is a 2-absorbing δ_1 -primary ideal of R_1) by Theorem 4.1. So we may assume that $I_1 \neq R_1$ and $I_2 \neq R_2$. Let $a, b \in R_2$ such that $ab \in I_2$. Let $0 \neq x \in I_1$. Then $0 \neq (x, 1)(1, a)(1, b) = (x, ab) \in I_1 \times I_2$. Thus $(x, 1) \times (1, a) = (x, a) \in I_1 \times I_2$ or (1, a)(1, b) = $(1, ab) \in \delta_{\times}(I_1 \times I_2) = \delta_1(I_1) \times \delta_2(I_2)$ or $(x, 1)(1, b) = (x, b) \in \delta_{\times}(I_1 \times I_2) = \delta_1(I_1) \times \delta_2(I_2)$. Since $\delta_1(I_1) \neq R_1$, we have $(1, a)(1, b) = (1, ab) \notin \delta_{\times}(I_1 \times I_2)$. Hence $(x, 1) \times (1, a) = (x, a) \in I_1 \times I_2$ or $(x, 1)(1, b) = (x, b) \in \delta_{\times}(I_1 \times I_2) = \delta_1(I_1) \times \delta_2(I_2)$. Thus we conclude that $a \in I_2$ or $b \in \delta_2(I_2)$. Thus I_2 is a δ_2 -primary ideal of R_2 . Similarly, it can be easily shown that I_1 is a δ_1 -primary ideal of R_1 .

 $(2)\Rightarrow(3)$ If $J = I_1 \times R_2$ for some 2-absorbing δ_1 -primary ideal I_1 of R_1 or $J = R_1 \times I_2$ for some 2-absorbing δ_2 -primary ideal I_2 of R_2 , then J is a 2-absorbing δ_{\times} -primary ideal of R by Theorem 4.1. Hence assume that $J = I_1 \times I_2$ for some δ_1 -primary ideal I_1 of R_1 and some δ_2 -primary ideal I_2 of R_2 . Then it is clear that $I'_1 = I_1 \times R_2$ and $I'_2 = R_1 \times I_2$ are δ_{\times} -primary ideals of R by Theorem 4.1. Hence $I'_1 \cap I'_2 = I_1 \times I_2 = J$ is a 2-absorbing δ_{\times} -primary ideal of R by Theorem 2.20.

 $(3) \Rightarrow (1)$ It is clear.

Note that $I_1 \neq 0$ and $I_2 \neq 0$ in the hypothesis of Theorem 4.2. In the following result, it is possible that $I_1 = 0$ or $I_2 = 0$.

Theorem 4.3. Let R_1 and R_2 be commutative rings with $1 \neq 0$, $R = R_1 \times R_2$, and δ_1, δ_2 be expansion functions of ideals of R_1, R_2 , respectively. Let $J = I_1 \times I_2$ be a proper ideal of R, for some ideals I_1, I_2 of R_1, R_2 , respectively, such that for every $i \in \{1, 2\}$, if $I_i \neq R_i$, then $\delta_i(I_i) \neq R_i$. Then the following statements are equivalent.

- (1) $J = I_1 \times I_2$ is a 2-absorbing δ_{\times} -primary ideal of R.
- (2) $I_1 = R_1$ and I_2 is a 2-absorbing δ_2 -primary ideal of R_2 or $I_2 = R_2$ and I_1 is a 2-absorbing δ_1 -primary ideal of R_1 or I_1 is a δ_1 -primary ideal of R_1 and I_2 is a δ_2 -primary ideal R_2 .

Proof. (1) \Rightarrow (2) Assume that $I_1 \times I_2$ is a 2-absorbing δ_{\times} -primary ideal of R. If $I_1 = R_1$ ($I_2 = R_2$), then I_2 is a 2-absorbing δ_2 -primary ideal of R_2 (I_1 is a 2-absorbing δ_1 -primary ideal of R_1) by Theorem 4.1. So

we may assume that $I_1 \neq R_1$ and $I_2 \neq R_2$. Hence, by hypothesis, $\delta_1(I_1) \neq R_1$ and $\delta_2(I_2) \neq R_2$. Suppose that I_1 is not a primary ideal of R_1 . Then there are $a, b \in R_1$ such that $ab \in I_1$ but neither $a \in I_1$ nor $b \in \delta_1(I_1)$. Let x = (a, 1), y = (1, 0), and c = (b, 1). Then $xyc = (ab, 0) \in J$ but neither $xy = (a, 0) \in J$ nor $xc = (ab, 1) \in \delta_{\times}(J)$ nor $yc = (b, 0) \in \delta_{\times}(J)$, which is a contradiction. Thus I_1 is a primary ideal of R_1 . Suppose that I_2 is not a primary ideal of R_2 . Then there are $d, e \in R_2$ such that $de \in I_2$ but neither $d \in I_2$ nor $e \in \delta_2(I_2)$. Let x = (1, d), y = (0, 1), and c = (1, e). Then $xyc = (0, de) \in J$ but neither $xy = (0, d) \in J$ nor $xc = (1, de) \in \delta_{\times}(J)$ nor $yc = (0, e) \in \delta_{\times}(J)$, which is a contradiction. Thus I_2 is a primary ideal of R_2 .

 $(2) \Rightarrow (1)$ If $J = I_1 \times R_2$ for some 2-absorbing δ_1 -primary ideal I_1 of R_1 or $J = R_1 \times I_2$ for some 2-absorbing δ_2 -primary ideal I_2 of R_2 , then J is a 2-absorbing δ_{\times} -primary ideal of R by Theorem 4.1. Hence assume that $J = I_1 \times I_2$ for some δ_1 -primary ideal I_1 of R_1 and some δ_2 -primary ideal I_2 of R_2 . Then it is clear that $I'_1 = I_1 \times R_2$ and $I'_2 = R_1 \times I_2$ are δ_{\times} -primary ideals of R by Theorem 4.1. Hence $I'_1 \cap I'_2 = I_1 \times I_2 = J$ is a 2-absorbing δ_{\times} -primary ideal of R by Theorem 2.20.

Theorem 4.4. Let R_1 and R_2 be commutative rings with $1 \neq 0$, $R = R_1 \times R_2$, and δ_1, δ_2 be expansion functions of ideals of R_1, R_2 , respectively. Let $I = I_1 \times I_2$ be a nonzero proper ideal of R for some ideals I_1, I_2 of R_1, R_2 , respectively, such that for every $i \in \{1, 2\}$, if $I_i \neq R_i$, then $\delta_i(I_i) \neq R_i$. Then I is a weakly 2-absorbing δ_{\times} -primary ideal of R that is not 2-absorbing δ_{\times} -primary if and only if one of the following conditions holds.

- (1) $I = I_1 \times I_2$, where $I_1 \neq R_1$ is a nonzero weakly δ_1 -primary ideal of R_1 that is not δ_1 -primary and $I_2 = 0$ is a δ_2 -primary ideal of R_2 .
- (2) $I = I_1 \times I_2$, where $I_2 \neq R_2$ is a nonzero weakly δ_2 -primary ideal of R_2 that is not δ_2 -primary and $I_1 = 0$ is a δ_1 -primary ideal of R_1 .

Proof. Suppose that I is a nonzero weakly 2-absorbing δ_{\times} -primary ideal of R that is not 2-absorbing δ_{\times} -primary ideal. Then $I = I_1 \times I_2$ for some ideals I_1 , I_2 of R_1 and R_2 , respectively. Assume that $I_1 \neq 0$ and $I_2 \neq 0$. Then I is a 2-absorbing δ_{\times} -primary ideal of R by Theorem 4.2, a contradiction. Therefore $I_1 = 0$ or $I_2 = 0$. Without loss of generality we may assume that $I_2 = 0$. We show that $I_2 = 0$ is a δ_2 -primary ideal of R_2 . Let $a, b \in R_2$ such that $ab \in I_2$, and let $0 \neq x \in I_1$. Since $0 \neq (x, 1)(1, a)(1, b) = (x, ab) \in I$ and $(1, ab) \notin \delta_{\times}(I)$, we obtain $(x, a) = (x, 1)(1, a) \in I$ or $(x, b) = (x, 1)(1, b) \in \delta_{\times}(I)$, and so $a \in I_2$ or $b \in \delta_2(I_2)$. Thus $I_2 = 0$ is a δ_2 -primary ideal of R_2 . Next, we show that I_1 is a weakly δ_1 -primary ideal of R. Let $0 \neq ab \in I_1$, for some $a, b \in R_1$. Since $0 \neq (a, 1)(b, 1)(1, 0) \in I_1 \times 0$ and $(ab, 1) \notin I_1 \times 0$, we conclude $(a, 0) = (a, 1)(1, 0) \in \delta_{\times}(I_1 \times 0) = \delta_{\times}(I)$ or $(b, 0) = (b, 1)(1, 0) \in \delta_{\times}(I_1 \times 0) = \delta_{\times}(I)$. Thus $a \in I_1$ or $b \in \delta_1(I_1)$, and therefore I_1 is a weakly δ_1 -primary ideal of R_1 . Since $I_2 = 0$ is a δ_2 -primary ideal of R_2 . Suppose that $I_1 \neq R_2$ is a 2-absorbing δ_{\times} -primary ideal of R_1 . Since $I_2 = 0$ is a δ_2 -primary ideal of R_2 , we conclude that $I_1 = I_1 \times I_2$ is a 2-absorbing δ_{\times} -primary ideal of R_1 . Since $I_2 = 0$ is a δ_2 -primary ideal of R_2 , we conclude that $I = I_1 \times I_2$ is a 2-absorbing δ_{\times} -primary ideal of R_1 . Since $I_2 = 0$ is a δ_2 -primary ideal of R_2 , we conclude that $I = I_1 \times I_2$ is a 2-absorbing δ_{\times} -primary ideal of R_1 that is not δ_1 -primary ideal of R_1 that is not δ_1 -primary ideal of R_1 that is not δ_1 -primary.

Conversely, suppose that (1) holds. Assume that $(0,0) \neq (a,a')(b,b')(c,c') \in I = I_1 \times 0$. Since a'b'c' = 0 and $(0,0) \neq (a,a')(b,b')(c,c') \in I_1 \times 0$, we conclude that $abc \neq 0$. Assume $(a,a')(b,b') \notin I$. We consider three cases.

Case one: Suppose that $ab \notin I_1$, but a'b' = 0. Since I_1 is a weakly δ_1 -primary ideal of R_1 , we have $c \in \delta_1(I_1)$. Since $I_2 = 0$ is a δ_2 -primary ideal of R_2 , we have a' = 0 or $b' \in \delta_2(I_2)$. Thus $(a, a')(c, c') \in \delta_{\times}(I)$ or $(b, b')(c, c') \in \delta_{\times}(I)$.

Case two: Suppose that $ab \notin I_1$ and $a'b' \neq 0$. Then $(c,c') \in \delta_1(I_1) \times \delta_2(I_2) = \delta_{\times}(I)$. Thus $(a,a')(c,c') \in \delta_{\times}(I)$ or $(b,b')(c,c') \in \delta_{\times}(I)$.

Case three: Suppose that $ab \in I_1$, but $a'b' \neq 0$. Since $0 \neq ab \in I_1$ and I_1 is a weakly δ_1 - primary ideal of R_1 , we have $a \in I_1$ or $b \in \delta_1(I_1)$. Since $a'b' \neq 0$ and $I_2 = 0$ is a δ_2 -primary ideal of R_2 , we have $c' \in \delta_2(I_2)$. Thus $(a, a')(c, c') \in \delta_{\times}(I)$ or $(b, b')(c, c') \in \delta_{\times}(I)$. Hence I is a weakly 2-absorbing primary ideal of R. Since I_1 is not a δ_1 -primary ideal of R_1 , I is not a 2-absorbing δ_{\times} -primary ideal of R by Theorem 4.3.

Theorem 4.5. Let $R = R_1 \times R_2 \times \cdots \times R_n$, where $2 \le n < \infty$, and R_1, R_2, \ldots, R_n are commutative rings with $1 \ne 0$. Let $\delta_1, \ldots, \delta_n$ be expansion functions of ideals of R_1, \ldots, R_n , respectively. Let $J = I_1 \times \cdots \times I_n$ be a proper ideal of R, for some ideals I_1, \ldots, I_n of R_1, \ldots, R_n , respectively, such that for every $i \in \{1, \ldots, n\}$, if $I_i \ne R_i$, then $\delta_i(I_i) \ne R_i$. Then the following statements are equivalent.

- (1) J is a 2-absorbing δ_{\times} -primary ideal of R.
- (2) Either $J = \times_{t=1}^{n} I_t$ such that for some $k \in \{1, 2, ..., n\}$, I_k is a 2-absorbing δ_k -primary ideal of R_k , and $I_t = R_t$ for every $t \in \{1, 2, ..., n\} \setminus \{k\}$ or $J = \times_{t=1}^{n} I_t$ such that for some $k, m \in \{1, 2, ..., n\}$, I_k is a δ_k -primary ideal of R_k , I_m is a δ_m -primary ideal of R_m , and $I_t = R_t$ for every $t \in \{1, 2, ..., n\} \setminus \{k, m\}$.

Proof. We use induction on n. Assume that n = 2. Then the result is valid by Theorem 4.3. Thus let $3 \leq n < \infty$ and assume that the result is valid when $H = R_1 \times \cdots \times R_{n-1}$. We prove the result when $R = H \times R_n$. Note that $\delta_H(I_1 \times \cdots \times I_{n-1} = \delta_1(I_1) \times \cdots \times \delta_n(I_n)$. By Theorem 4.3, J is a 2-absorbing δ_{\times} -primary ideal of R if and only if either $J = L \times R_n$ for some 2-absorbing δ_H -primary ideal L of H or $J = H \times L_n$ for some 2-absorbing δ_n -primary ideal L_n of R_n . Since $I_i \neq R_1$ implies $\delta_i(I_i) \neq R_i$ by hypothesis, it should be clear that that a proper ideal Q of H is a δ_H -primary ideal of H if and only if $Q = \times_{t=1}^{n-1} I_t$ such that for some $k \in \{1, 2, \ldots, n-1\}$, I_k is a δ_k -primary ideal of R_k , and $I_t = R_t$ for every $t \in \{1, 2, \ldots, n-1\} \setminus \{k\}$. Thus the claim is now verified.

Theorem 4.6. Let $R = R_1 \times R_2 \times \cdots \times R_n$, where $3 \le n < \infty$, and R_1, R_2, \ldots, R_n are commutative rings with $1 \ne 0$. Let $\delta_1, \ldots, \delta_n$ be expansion functions of ideals of R_1, \ldots, R_n , respectively. Let $J = I_1 \times \cdots \times I_n$ be a nonzero proper ideal of R, for some ideals I_1, \ldots, I_n of R_1, \ldots, R_n , respectively, such that for every $i \in \{1, \ldots, n\}$, if $I_i \ne R_i$, then $\delta_i(I_i) \ne R_i$. Then the following statements are equivalent.

- (1) J is a weakly 2-absorbing δ_{\times} -primary ideal of R.
- (2) J is a 2-absorbing δ_{\times} -primary ideal of R.
- (3) Either $J = \times_{t=1}^{n} I_t$ such that for some $k \in \{1, 2, ..., n\}$, I_k is a 2-absorbing δ_k -primary ideal of R_k , and $I_t = R_t$ for every $t \in \{1, 2, ..., n\} \setminus \{k\}$ or $J = \times_{t=1}^{n} I_t$ such that for some $k, m \in \{1, 2, ..., n\}$, I_k is a δ_k -primary ideal of R_k , I_m is a δ_m -primary ideal of R_m , and $I_t = R_t$ for every $t \in \{1, 2, ..., n\} \setminus \{k, m\}$.

Proof. (1) \Leftrightarrow (2). Since J is a proper ideal of R, we have $J = I_1 \times \cdots \times I_n$, where every I_i is an ideal of R_i , and $I_j \neq R_j$ for some $j \in \{1, \ldots, n\}$. Suppose that $J = I_1 \times I_2 \times \cdots \times I_n \neq (0, \ldots, 0)$ is a weakly 2-absorbing δ_{\times} -primary ideal of R. Then there is an element $(0, \ldots, 0) \neq (a_1, a_2, \ldots, a_n) \in J$. Hence $(0, \ldots, 0) \neq (a_1, a_2, \ldots, a_n) = (a_1, 1, 1, \ldots, 1)(1, a_2, 1, \ldots, 1) \cdots (1, 1, \ldots, a_n) \in J$ implies there is a $j \in \{1, \ldots, n\}$ such that $b_j = 1$ and $(b_1, \ldots, b_n) \in \delta_{\times}(J) = \delta_1(I_1) \times \cdots \times \delta_n(I_n)$, where $b_1, \ldots, b_n \in \{1, a_1, \ldots, a_n\}$. Hence $\delta_j(I_j) = R_j$, and so $I_j = R_j$. Thus $J^3 \neq (0, \ldots, 0)$, and hence by Theorem 2.9(2), J is a 2-absorbing δ_{\times} -primary ideal. The converse is obvious.

 $(2) \Leftrightarrow (3)$. It is clear by Theorem 4.5.

Recall that a ring R is called a von-Neumann regular ring if for every $x \in R$ there exists a $y \in R$ such that xyx = x. It is well-known that a von-Neumann regular ring is reduced.

Theorem 4.7. Let $R = R_1 \times R_2 \times \cdots \times R_n$, where $3 \le n < \infty$, and R_1, R_2, \ldots, R_n are commutative rings with $1 \ne 0$. Let $\delta_1, \ldots, \delta_n$ be expansion functions of ideals of R_1, \ldots, R_n , respectively. Suppose that for every $i \in \{1, \ldots, n\}$, if whenever I_i is a proper ideal of R_i , then $\delta_i(I_i) \ne R_i$. Then the following statements are equivalent.

- (1) Every proper ideal of R is a weakly 2-absorbing δ_{\times} -primary ideal of R.
- (2) n = 3 and R_i is a field for every $i \in \{1, 2, 3\}$.
- (3) R is a von-Neumann regular ring with exactly three distinct maximal ideals.

Proof. (1) \Rightarrow (2). Suppose that every proper ideal of R is a weakly 2-absorbing δ_{\times} -primary ideal of R. Assume $n \ge 4$. Then $J = 0 \times 0 \times 0 \times R_4 \times \cdots \times R_n$ is a proper ideal of R that is not a weakly 2-absorbing δ_{\times} -primary ideal of R by Theorem 4.6. Hence n = 3. Without loss of generality, we may assume that R_1 is not a field. Then R_1 has a nonzero proper ideal I. Thus $J = I \times 0 \times 0$ is not a weakly 2-absorbing δ_{\times} -primary ideal of R by Theorem 4.6. Hence R_i is a field for every $i \in \{1, 2, 3\}$. $(2) \Rightarrow (3)$. No comments (it is clear).

 $(3) \Rightarrow (1)$. Since every von-Neumann regular ring is reduced and every prime ideal of R is maximal, we conclude that R is ring-isomorphic to $R_1 \times R_2 \times R_3$, where each R_i is a field for every $i \in \{1, 2, 3\}$. If each R_i is a field for every $i \in \{1, 2, 3\}$, then it is easily verified (see Theorem 4.6) that every proper ideal of R is a weakly 2-absorbing δ_{\times} -primary ideal of R.

In view of Theorem 4.7, we have the following result.

Corollary 4.8. Let R be a finite commutative ring with n prime ideals (maximal ideals), where $3 \le n < \infty$), i.e., R is ring-isomorphic to $R_1 \times \cdots \times R_n$, where each R_i is a finite quasi-local ring, where $1 \le i \le n$. Let $\delta_1, \ldots, \delta_n$ be expansion functions of ideals of R_1, \ldots, R_n , respectively. Suppose that for every $i \in \{1, \ldots, n\}$, if whenever I_i is a proper ideal of R_i , then $\delta_i(I_i) \ne R_i$. Then the following statements are equivalent.

- (1) Every proper ideal of R is a weakly 2-absorbing δ_{\times} -primary ideal of R.
- (2) n = 3 and R_i is a field for every $i \in \{1, 2, 3\}$.
- (3) R is a von-Neumann regular ring with exactly three distinct prime ideals.
- (4) R is a reduced ring with exactly three distinct prime ideals.

References

- [1] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), no. 4, 831-840.
- [2] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011), no. 5, 1646– 1672.
- [3] D. F. Anderson and A. Badawi, On (m, n)-closed ideals of commutative rings, J. Algebra Appl. 16 (2017), no. 1, 1750013, 21 pp.
- [4] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), no. 3, 417-429.
- [5] A. Badawi, On weakly semiprime ideals of commutative rings, Beitr. Algebra Geom. 57 (2016), no. 3, 589-597.
- [6] A. Badawi and A. Y. Darani, On weakly 2-absorbing ideals of commutative rings, *Houston J. Math.* **39** (2013), no. 2, 441–452.
- [7] A. Badawi, U. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc. 51 (2014), no. 4, 1163–1173.
- [8] A. Badawi, U. Tekir and E. Yetkin, On weakly 2-absorbing primary ideals of commutative rings, J. Korean Math. Soc. 52 (2015), no. 1, 97–111.
- [9] A. Y. Darani and H. Mostafanasab, On 2-absorbing preradicals, J. Algebra Appl. 14 (2015), no. 2, 1550017, 22 pp.
- [10] A. Y. Darani and H. Mostafanasab, Co-2-absorbing preradicals and submodules, J. Algebra Appl. 14 (2015), no. 7, 1550113, 23 pp.
- [11] A. Y. Darani and E. R. Puczylowski, On 2-absorbing commutative semigroups and their applications to rings, Semigroup Forum 86 (2013), no. 1, 83–91.
- [12] S. Ebrahimi Atani and F. Farzalipour, On weakly primary ideals, Georgian Math. J. 12 (2005), no. 3, 423-429.
- [13] B. Fahid and D. Zhao, 2-absorbing δ-primary ideals in commutative rings, Kyungpook Math. J. 57 (2017), no. 2, 193–198.
- [14] C. Huneke and I. Swanson, Integral Closure of Ideals, Rings, and Modules, London Mathematical Society Lecture Note Series, 336. Cambridge University Press, Cambridge, 2006.
- [15] H. Mostafanasab, U. Tekir and K. H. Oral, Classical 2-absorbing submodules of modules over commutative rings, Eur. J. Pure Appl. Math. 8 (2015), no. 3, 417–430.
- [16] Sh. Payrovi and S. Babaei, On the 2-absorbing ideals, Int. Math. Forum 7 (2012), no. 5-8, 265–271.
- [17] D. Zhao, δ -primary ideals of commutative rings, Kyungpook Math. J. 41 (2001), no. 1, 17–22.